

Today's Prelims Topics

M.S Swaminathan

Context

Prime Minister Narendra Modi will inaugurate a science conference on August 7 to mark the birth centenary of M.S. Swaminathan, organized by MSSRF.

About Dr. M.S. Swaminathan

- Full Name: Mankombu Sambasivan Swaminathan
- Known as: Father of Green Revolution in India
- Lifespan: 7th August 1925 28th September 2023 (Died at age 98)
- Career:
 - o IARI Director (1961–1972) spearheaded research on high-yielding wheat.
 - O Director-General, ICAR (1972-1979)
 - Secretary, Ministry of Agriculture & Irrigation (1979–1980)
 - Member, Planning Commission (1980–1982) focused on agriculture & rural development.
 - O Director-General, IRRI, Philippines (1982)
 - o President, IUCN (1984–1990)
 - Served as Rajya Sabha MP (2007–2013)
- Major Contributions:
 - O Green Revolution in India
 - Chaired the National Commission on Farmers, recommended:
 - MSP reforms
 - Policies for farmer suicide prevention
 - Protection of Plant Varieties and Farmers' Rights Act, 2001
 - Cryogenetics in potatoes developed cold-resistant crops.
 - Initiated research on C4 rice plants for improved photosynthesis efficiency.
- Key Awards & Recognitions:
 - O International:
 - Ramon Magsaysay Award (1971)
 - Albert Einstein World Science Award (1986)
 - World Food Prize (1987)
 - UNEP Sasakawa Environment Prize (1994)
 - Franklin D Roosevelt Four Freedoms Medal (2000)
 - UNESCO Gandhi Prize (2000)
 - O National:
 - Shanti Swarup Bhatnagar Award (1961)
 - Padma Shri (1967)
 - Padma Bhushan (1972)
 - Padma Vibhushan (1989)
 - Indira Gandhi Peace Prize (2000)
 - Lal Bahadur Shastri National Award (2007)

Source: <u>TheHindu</u>

Pradhan Mantri Kisan Sampada Yojana (PMKSY)

Context

The Union Cabinet increased the budget for **PMKSY** by ₹1,920 crore to ₹6,520 crore to strengthen the food processing sector through new irradiation units and food testing labs.

Pradhan Mantri Kisan SAMPADA Yojana (PMKSY)

- Initially approved as a Central Sector Scheme named SAMPADA (Scheme for Agro-Marine Processing and Development of Agro-Processing Clusters).
- Approved by the Union Cabinet in May 2017 for the 14th Finance Commission cycle (2016– 2020).
- The scheme has now been renamed as Pradhan Mantri Kisan SAMPADA Yojana (PMKSY).
- Ministry: Ministry of Food Processing Industries (MoFPI)
- It is a comprehensive umbrella scheme aimed at boosting the food processing sector in India.

- Modernise infrastructure in food processing
- Reduce post-harvest losses
- Improve value addition in agricultural produce
- Boost farmer income
- Create modern supply chains from farm gate to retail
- Ensure **better price realization** for farmers

Key Components / Sub-schemes

- Mega Food Parks
- Integrated Cold Chain and Value Addition Infrastructure
- Food Safety and Quality Assurance Infrastructure
- Infrastructure for Agro-processing Clusters
- Backward & Forward Linkages
- Creation/Expansion of Food Processing and Preservation Capacities
- Operation Greens to stabilize supply of Tomato, Onion, Potato (TOP)

Recent Developments (2025)

- Budget increased by ₹1,920 crore → Total outlay now ₹6,520 crore
- Funds to be used for:
 - o 50 multi-product food irradiation units
 - o 100 food testing labs

Benefits & Impact

- Reduces agri-wastage
- Increases farm-level income
- Enhances food exports
- Promotes entrepreneurship in rural areas
- Creates employment in food processing sector
- Improves food safety and quality standards

Source: TheHindu

Himgiri

Context

INS Himgiri (Yard 3022) has been officially handed over to the Indian Navy by Garden Reach Shipbuilders and Engineers (GRSE) in Kolkata.

About INS Himgiri

- Type & Class:
 - INS Himgiri is the third ship of the Nilgiriclass (Project 17A) frigates.
 - It is the first ship of its class constructed by Garden Reach Shipbuilders & Engineers (GRSE), Kolkata.
 - The current INS Himgiri is a modern reincarnation of the original Leander-class frigate INS Himgiri
- Design & Supervision:
 - O Designed by: Warship Design Bureau (WDB).
 - Construction overseen by: Warship Overseeing Team (WOT), Kolkata.

• Key Features of INS Himgiri

- Advanced Weaponry & Sensors: Equipped with a state-of-the-art weapon and sensor suite, offering upgrades over the earlier Project 17 (Shivalik-class).
- Propulsion System: Uses a CODOG (Combined Diesel or Gas) propulsion setup.
 - Powered by both diesel engines and gas turbines.
 - Drives Controllable Pitch Propellers (CPP) via an Integrated Platform Management System (IPMS).
- Armament Includes:
 - Supersonic Surface-to-Surface Missiles (SSM)
 - Medium-Range Surface-to-Air Missiles (SAM)
 - Close-in Weapon Systems (CIWS) with rapid-fire capability
- O Indigenization:
 - Boasts **75% indigenous content**.
 - Involved over **200 MSMEs** during construction at GRSE.

Source: PIB

Reorganisation of states


Context

Tamil Nadu Governor R N Ravi criticized the linguistic division of states, calling it a cause for creating "second-class citizens," sparking controversy amid renewed debates on language politics in India

Reorganisation of States in India

- Historical Background:
 - Post-independence India required an efficient administrative setup.
 - The need arose to reorganise states for **better governance**, **administrative convenience**, and **cultural representation**.
- State Reorganisation Act, 1956:
 - Came into force on 31 August 1956.
 - Based on recommendations of the States Reorganisation Commission (SRC), 1953.
 - Marked a shift from colonial administrative units to linguistically and culturally aligned states.

Pre-1956 Administrative Structure

• State Classification (1951):

- Part A: Former British provinces (e.g., Bombay, Madras, UP).
- Part B: Princely states that had signed instruments of accession (e.g., Hyderabad, Mysore, PEPSU).
- Part C: Former Chief Commissioners' provinces and smaller princely states (e.g., Delhi, Bhopal, Manipur).
- o Part D: Only Andaman and Nicobar Islands, directly administered by the President.

Major Factors Behind State Reorganisation

- Linguistic & Cultural Identity: Andhra Pradesh was the first linguistic state (1953), created after the death of Potti Sriramulu.
 - Language often coincided with **cultural unity** and made governance easier.
- **Tribal & Ethnic Considerations**: States like **Nagaland** were formed to accommodate tribal uniqueness.
- Economic Aspirations: Regions like Chhattisgarh, Jharkhand, and Telangana demanded statehood to ensure focused economic development.
- Administrative Viability: States like Uttarakhand were carved from larger units for efficient administration.

• **Security Concerns**: **Jammu & Kashmir** was reorganised in 2019 due to national security and administrative issues.

Key Commissions on State Reorganisation

- Dhar Commission (1948):
 - Rejected linguistic division.
 - Favoured factors like administrative convenience and financial viability.
- JVP Committee (1948):
 - Members: Nehru, Patel, Pattabhi Sitaramayya.
 - Stressed national unity over language.
 - O Allowed linguistic reorganisation only if public demand was overwhelming.
- Fazl Ali Commission (1953):
 - Accepted language as a factor, but not the sole criterion.
 - Recommended creation of 16 states and 3 Union Territories.
 - O Basis for the **States Reorganisation Act, 1956**.

Outcomes of 1956 Reorganisation

- Post-1956 Setup:
 - Replaced the A/B/C/D classification.
 - O Created 14 states and 6 Union Territories.
 - O Passed alongside the 7th Constitutional Amendment Act (1956).
 - O Examples:
 - Kerala (1956): Formed by merging Travancore-Cochin with Malabar.
 - Bombay State was reorganised leading to Maharashtra and Gujarat.

States Created After 1956

- 1960: Maharashtra and Gujarat (Samyukta Maharashtra and Mahagujarat movements)
- 1966: Punjab, Haryana, and Himachal Pradesh (Punjabi Suba movement; Chandigarh as UT)
- 1971: Himachal Pradesh granted full statehood.
- 1972: Manipur, Tripura, Meghalaya became full-fledged states.
- 1975: Sikkim joined India and became a state (earlier a protectorate).
- 1987: Goa became a state; Mizoram and Arunachal Pradesh were upgraded from UTs.
- 2000: Chhattisgarh, Uttarakhand, and Jharkhand formed from MP, UP, and Bihar respectively.
- 2014: Telangana formed from Andhra Pradesh after prolonged agitation.
- 2019: Jammu & Kashmir reorganised into two UTs: J&K and Ladakh (Article 370 revoked).

Ongoing and Emerging Statehood Demands

- **Uttar Pradesh**: Proposals to divide into Purvanchal, Bundelkhand, Awadh Pradesh, and Pashchim Pradesh.
- Vidarbha: Eastern Maharashtra demand for separate statehood.
- Other Demands:
 - O Gorkhaland (North Bengal), Bodoland (Assam), Maru Pradesh (Rajasthan)
 - Kamtapur, Coorg, Rayalaseema, Saurashtra, Mithila, Panun Kashmir, Bru Land, Chakma territory, and more.

Source: IndianExpress

Wise Use of Wetland

Context

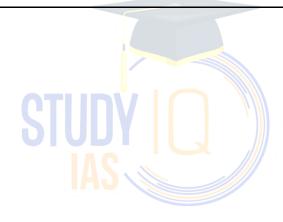
India's resolution titled "Promoting Sustainable Lifestyles for the Wise Use of Wetlands" was adopted with overwhelming support at Ramsar COP15 held in Zimbabwe.

About Wise Use of Wetlands (Under Ramsar Convention)

- Core Principle: Central concept of wetland conservation under the Ramsar Convention.
 - O Supports Ramsar Resolution XIV.8 on Communication, Education, Participation and Awareness (CEPA) to sensitize communities for wetland protection.
- **Definition:** Wise use means preserving the *ecological character* of wetlands using *ecosystem-based approaches* aligned with *sustainable development goals*.
- **Purpose:** Ensures both *conservation* and *sustainable utilization* of wetlands and their ecosystem services for people and biodiversity.
- **Obligation:** All Ramsar signatories must promote wise use through:
 - National-level plans & legal frameworks,
 - Effective wetland management strategies,
 - o Public awareness and education efforts.
- Highlights India's **Save Wetlands Campaign** and **Mission Sahbhagita**, which mobilised over **2** million citizens to ground-truth more than **170,000 wetlands**.
- India currently has **91** Ramsar Sites, the **highest in Asia and third largest globally**, showcasing its leadership in wetland conservation.
- Supports the achievement of several UN Sustainable Development Goals (SDGs)—specifically SDG 6 (Clean Water), SDG 12 (Responsible Consumption), SDG 13 (Climate Action), SDG 15 (Life on Land), and SDG 17 (Partnerships).

Source: <u>TimesOfIndia</u>

News in Short


Nationwide Financial Awareness Saturation Campaign

News? The Nationwide Financial Awareness Saturation Campaign has reached a significant milestone in its first month.

About the Campaign

- Objective: To saturate all Gram Panchayats (GPs) and Urban Local Bodies (ULBs) with financial awareness and ensure that every eligible citizen avails the benefits of major government financial schemes.
- Targeted Schemes:
 - Pradhan Mantri Jan Dhan Yojana (PMJDY) Financial inclusion through zero-balance bank accounts
 - Pradhan Mantri Jeevan Jyoti Bima Yojana (PMJJBY) Life insurance at affordable rates
 - Pradhan Mantri Suraksha Bima Yojana (PMSBY) Accident insurance for the poor and vulnerable
 - O Atal Pension Yojana (APY) Retirement income security for unorganised workers.

Source: PIB

Editorial Summary

Fight Against Malaria: India's Path to Elimination

Context

- India's malaria challenge is no longer about widespread burden it now lies in tackling hidden carriers, hard-to-reach regions, and a resilient parasite.
 - The 2030 elimination target is more than a deadline; it is a litmus test of how effectively science, governance, and public health can come together to conquer this age-old disease.

Forms of Malaria

- Plasmodium falciparum (Pf)-- Most lethal form.
 - O Causes severe symptoms and complications.
 - Predominant in Africa, but also exists in India.
- Plasmodium vivax (Pv) Common in India.
 - O Can remain dormant in the liver and cause **relapses**.
 - Harder to eliminate due to asymptomatic carriers and delayed symptoms.
- Mixed Infections (Pf + Pv) Not uncommon in states like Jharkhand (up to 20% of cases).
 - Pose diagnostic and treatment challenges.
- Plasmodium malariae, P. ovale, P. knowlesi Rare in India.
- Zoonotic strain *Plasmodium cynomolgi*
 - O A monkey malaria parasite.
 - Emerging as a model for P. vivax research.

Prevalence of Malaria in India

- Reduction: Malaria cases have dropped by over 80% from 2015 to 2023.
- National Average: Significantly improved, showing India's progress in control measures.
- High-burden pockets remain:
 - Lawngtlai (Mizoram) 56 cases per 1,000 population.
 - Narayanpur (Chhattisgarh) 22 cases per 1,000.
- Asymptomatic cases: Serve as silent reservoirs, especially in tribal and forested regions.

Why Malaria Eradication Still Lags

- Biological Complexity of P. vivax: Dormancy and relapse potential complicate treatment.
- Insecticide and Drug Resistance: Mosquitoes are surviving insecticides.
 - Parasites are evolving resistance to existing medications.
- High Asymptomatic Carrier Rate: Hard to detect and treat, facilitating silent transmission.
- Health Access in Remote Areas: Tribal belts and forested regions are underserved in healthcare.
- Fragmented Surveillance and Diagnostics: Weak disease tracking, especially for mixed infections.
- Slow Vaccine Rollout: Existing vaccines have limited efficacy or logistical barriers.

Key Initiatives for Malaria Elimination in India

- National Framework for Malaria Elimination (NFME), 2016–2030: Strategic roadmap targeting elimination by 2030.
- National Centre for Vector Borne Diseases Control (NCVBDC): Coordinates data, surveillance, and vector control.
- Indigenous Vaccine Development:

- AdFalciVax (ICMR, 2025): India's first dual-stage vaccine (infection + transmission blocking).
- O Stable at room temperature, useful in rural deployment.
- **R&D Collaborations:** ICMR, NII, RMRC, and international partners working on **PfSPZ**, **PfRH5**, and **Pvs230D1M**.
- Transmission-Blocking Vaccines (TBVs): Target mosquito gut stage to halt community transmission.
 - Indian teams are actively contributing.
- New Platforms: mRNA vaccines, protein-ferritin nanoparticles, engineered antibodies, and gene drive technologies.

Way Ahead

- Scale up Surveillance and Diagnostics: Especially in tribal and asymptomatic zones.
 - Use of AI, remote sensing, and portable diagnostic kits.
- Fast-track Vaccine Trials and Regulatory Approval: Accelerate AdFalciVax and other indigenous candidates.
 - Leverage COVID-era learnings for logistics and outreach.
- Integrate Vector Control with Genomic Monitoring: Monitor drug and insecticide resistance.
 - Use gene editing and gene drives with ethical safeguards.
- Targeted Public Health Interventions: Focus on hotspots, migrant labor zones, and forested areas.
- Community Awareness and Health Worker Training: Boost IEC campaigns in vernacular languages.
 - Equip ASHAs and tribal health workers with necessary tools.
- Cross-sectoral Coordination: Align efforts across ministries Health, Tribal Affairs, Rural Development.

Source: The Hindu

Why the world needs better green technologies

Context

India's renewable energy push faces efficiency, land, and storage challenges; next-gen technologies and policy innovation are vital for sustainable growth.

Current Renewable Energy Sources in India

As of 2025, India's installed renewable energy capacity (excluding large hydropower) stands at over **180 GW**. The key sources include:

Solar Energy

- Largest contributor among renewables (~80 GW installed).
- o Rooftop solar and utility-scale solar parks (e.g., Bhadla Solar Park in Rajasthan).

Wind Energy

- o ~45 GW installed.
- o Primarily concentrated in Tamil Nadu, Gujarat, Maharashtra, and Karnataka.

Small Hydro Power (SHP)

- ~5 GW installed capacity.
- O Useful for decentralized generation in hilly areas.

Biomass Energy

- o ~10 GW installed.
- o Includes bagasse cogeneration, urban and industrial waste-to-energy.

Waste-to-Energy

- Limited capacity (~0.2 GW).
- Still in nascent stages due to regulatory and technological constraints.

Green Hydrogen (Emerging)

• Production pilot projects underway under the National Green Hydrogen Mission.

Challenges in Renewable Energy Deployment in India

- Low Efficiency & Land Intensity: Traditional silicon solar panels have ~15−18% efficiency.
 - Need large tracts of land for significant energy output challenging in densely populated regions.
- Intermittency & Storage: Solar and wind are intermittent (not available 24/7).
 - Grid balancing and battery storage technologies are still underdeveloped.
- Transmission Constraints: Renewable-rich regions (e.g., Rajasthan, Gujarat) are far from load centers.
 - Transmission infrastructure lags behind generation capacity.
- **High Initial Investment & Financing Gaps:** Though lifecycle costs are lower, **upfront CAPEX** is high.
 - Small-scale producers struggle with financing and subsidies.
- Import Dependence: India imports ~80% of its solar cells/modules, mainly from China.
 - Weak domestic manufacturing base.
- **Environmental and Social Issues:** Wind and solar farms disrupt local ecosystems or displace communities.
 - Improper siting leads to ecological degradation (e.g., grasslands, forest edges).
- Lack of Skilled Manpower and R&D: Limited availability of trained professionals for installation, maintenance, and research.
 - Low domestic R&D spending on next-gen technologies like **perovskite solar cells**, **artificial photosynthesis**, etc.
- Underdeveloped Green Hydrogen Ecosystem: High energy consumption in electrolysis.
 - O Difficult storage and transportation due to hydrogen's low density and leakage risk.

Solutions and the Way Forward

- Invest in Next-Gen Solar Technologies:L Promote R&D and commercialization of perovskite, gallium arsenide, and tandem solar cells with >30% efficiency.
 - Support indigenous innovations like **artificial photosynthesis** and **solar fuels**.
- Enhance Battery Storage and Grid Flexibility: Scale up battery energy storage systems (BESS) and pumped hydro storage.
 - Develop smart grids, demand response systems, and better forecasting models.
- Expand Domestic Manufacturing (Atmanirbhar Bharat): Strengthen PLI (Production-Linked Incentive) schemes for solar modules, electrolysers, and EV components.
 - Reduce import dependence, especially from China.
- Rationalize Land Use and Promote Agri-Photovoltaics: Use rooftops, canal tops, and barren land to minimize conflict with agriculture/forests.
 - Promote **agrivoltaics** combining farming and solar on the same land.
- Scale Up Green Hydrogen with Innovation: Support low-temperature electrolysis, better catalysts, and methanol/ammonia pathways.
 - Encourage **public-private partnerships** for hydrogen infrastructure.
- Boost Financing and De-risk Investments: Create green bonds, sovereign guarantees, and viability gap funding to attract private capital.
 - Incentivize decentralised solar, especially in rural areas and MSMEs.
- Policy & Regulatory Support: Uniform and stable renewable energy policies across states.
 - O Strengthen Renewable Purchase Obligations (RPOs) and grid feed-in mechanisms.
- Focus on Skill Development and Research: Expand skilling programs under Skill India Mission for solar, wind, and hydrogen sectors.
 - Create **energy innovation hubs** in collaboration with top research institutes.

Source: The Hindu

